
Дроссельные заслонки, запорные и обратные клапаны

Дроссельная заслонка DL

Применение

Дроссельная заслонка DL предназначена для регулирования расхода воздуха в прямоугольных каналах.

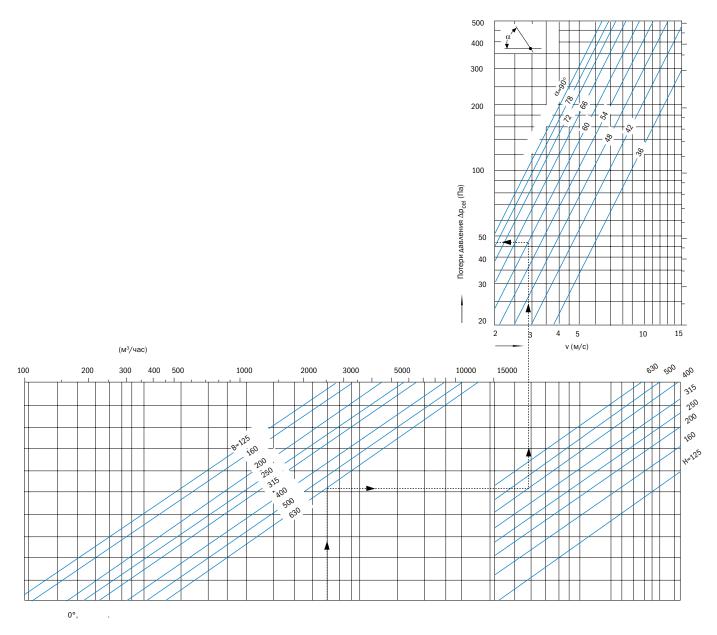
Обозначение электроприводов:

B1 (LM 24A)

B2 (LM 220A)

B3 (LM 24A SR) – плавное регулирование

Описациа


Дроссельная заслонка состоит из корпуса, двух створок, изготовленных из оцинкованной стали, и механизма для регулирования угла поворота створок. Заслонку можно изолировать снаружи.

Размеры:

В	Н	B2	H2
125	125	185	190
100	125	220	190
160	160	220	225
	125		190
200	160	260	225
	200]	265
	125		190
250	160	240	225
250	200	310	265
	250		315
	125		190
	160		225
315	200	375	265
	250		315
	315		380
	125		190
	160		225
400	200	460	265
400	250	460	315
	315		380
	400		465
	125		190
	160		225
	200		265
500	250	560	315
	315		380
	400		465
	500		565
	125		190
	160		225
	200		265
630	250	690	315
030	315	090	380
	400		465
	500		565
	600		665

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Диаграмма для определения потерь полного давления

Значение символов

Q (м³/час) Расход воздуха

v (м/с) Скорость воздуха в воздуховоде

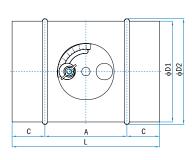
 $\Delta \mathbf{p}_{\mathsf{cel}}$ (Па) Потери давления

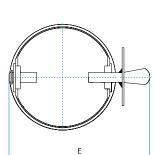
Образец заказа DL / R B1 x H1 — R Ручное регулирование В Вывод под привод, но без электропривода В1 Электропривод LM 24A В2 Электропривод LM 230A В3 Электропривод LM 24A SR (плавное регулирование)

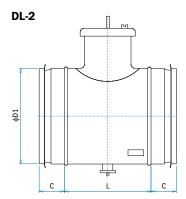
■ Дроссельные заслонки DL-1, DL-2

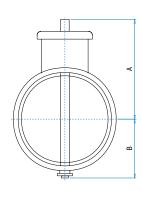
Применение

Дроссельные заслонки DL-1, DL-2 предназначены для регулирования расхода воздуха в воздуховодах круглого сечения систем вентиляции и кондиционирования воздуха. Изготавливаются из оцинкованной стали.


Описание

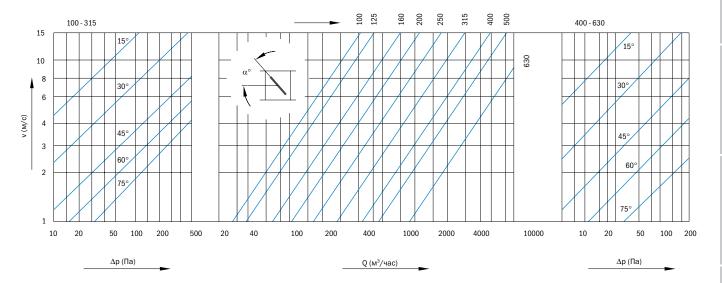

Дроссельные заслонки DL-1, DL-2 состоят из корпуса, одной створки, изготовленных из оцинкованной стали и механизма для установки угла поворота створки. Заслонки могут быть изолированы снаружи. Модель DL-2 оснащена наружной резиновой прокладкой.





DL-1

Размеры DL-1


Размер	100	125	160	200	250	315	400	500	630	
ΦD1	98	123	158	198	248	312	397	496	626	
ΦD2	104	129	164	204	254	318	403	502	632	
A		100		10	05	170				
С			40			5	0	80		
L		180		23	30	27	70	330		
E	147	173	207	247	297	362	449	548	678	

Размеры DL-2

Размер	80	100	125	140	150	160	180	200	225	250	280	315	400	500	630
ΦD1	78	98	123	138	148	158	178	198	223	248	278	313	398	498	628
A	105	115	125	135	140	145	155	165	175	190	205	220	295	345	410
В	55	65	75	85	90	95	105	115	125	140	155	170	215	265	330
C						4	0						65		
L		100								130		130			

Образец заказа DL-1 / R разм. 200 — R Ручное регулирование — В Вывод под привод, но без электропривода В1 Электропривод LM 24A В2 Электропривод LM 230A В3 Электропривод LM 24A SR (плавное регулирование) J1 Электропривод DAN 1.N (24 B) J2 Электропривод DAN 2.N (230 B V) J3 Электропривод DMN 1.2N (24 В плавное регулирование) 1,2 Тип дроссельной заслонки

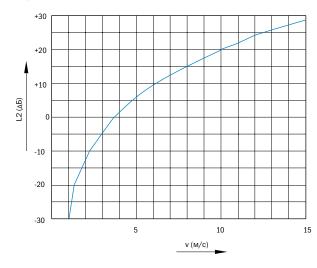
Диаграмма для определения потерь полного давления

 $L_{WA} = L_{NAZ} + L1 + L2 (\Delta E(A))$

Таблица для L_{NAZ:}

Dogwon	α_{ullet}			Ча	астота (Г	ц)		
Размер		125	250	500	1000	2000	4000	8000
	15	37	26	22	18	11	11	10
100	30	43	32	28	24	19	19	18
\downarrow	45	48	43	38	34	31	30	31
315	60	54	51	48	46	45	43	42
	75	58	55	54	52	52	51	50
	15	39	29	24	20	14	14	12
400	30	46	35	31	27	22	22	21
↓ [45	52	47	42	38	35	34	34
630	60	59	56	53	51	50	48	47
	75	64	62	61	59	59	59	58

Значение символов


Q (м³/час) Расход воздуха

v (м/с) Скорость воздуха в воздуховоде

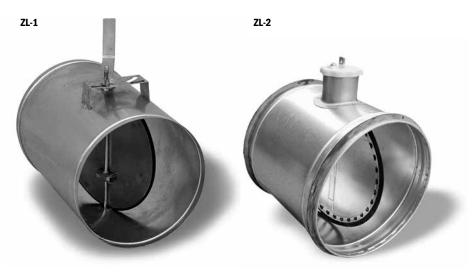
 $\Delta \mathbf{p}_{\mathsf{cel}}$ (Па) Потери давления

L_{WA} (дБ(A)) Уровень звуковой мощности

Диаграмма для L2

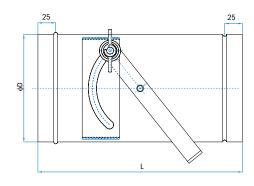
Таблица для L1

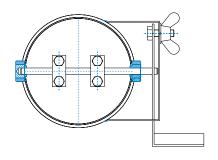
Размер	100	125	160	200	250	315	400	500	630
L1 (дБ)	-2	-1	0	+1	+2	+3	+4	+5	+6


Запорные клапаны ZL-1, ZL-2

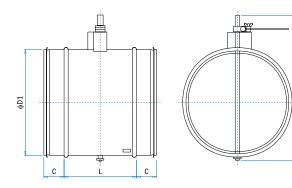
Применение

Запорные клапаны ZL-1, ZL-2 используются для прекращения подачи или удаления воздуха в вентиляционных системах для помещений с повышенными требованиями к чистоте воздуха. Чаще всего они используются в системах, оснащенных фильтрами тонкой очистки. При эксплуатации фильтры загрязняются и падение давления на фильтрах возрастает. Чтобы достичь постоянства расхода воздуха через фильтр в начальной стадии эксплуатации, необходимо компенсировать недостающее падение давления. Обычно при проектировании начальное сопротивление нового фильтра принимается 140 или 250 Па. Допустимое падение давления, при достижении которого фильтр заменяют, равняется двойному начальному сопротивлению. Разница падения давления компенсируется клапаном, так чтобы суммарное падение давления на фильтре и клапане равнялось двойному значению начального сопротивления фильтра. С увеличением потерь давления на фильтре клапан открывается так, чтобы сохранить постоянство суммарного падения давления на фильтре и клапане. Во время замены фильтра тонкой очистки клапан закрывается и обеспечивается герметичность. Запорные клапаны изготовлены по стандарту DIN 1946.


Описание


Запорные клапаны ZL-1, ZL-2 состоят из корпуса, поворотного диска, изготовленных из оцинкованной стали, резиновой прокладки, медных подшипников и механизма регулирования. Регулирование осуществляется вручную или с помощью пневмо- или электропривода. Для модели с ручным регулированием предусмотрен механизм фиксации. Модель ZL-2 оснащена наружной резиновой прокладкой.

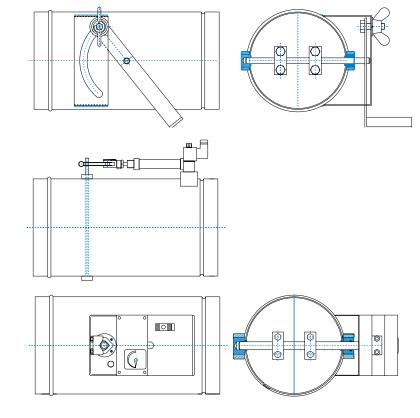
Размеры ZL-1


Размер	100	150	200	250	300	315	350	400	500	600	650	700
ΦD	98	148	198	248	298	313	348	398	498	598	648	698
L	300	450	500	600	700	750	800					

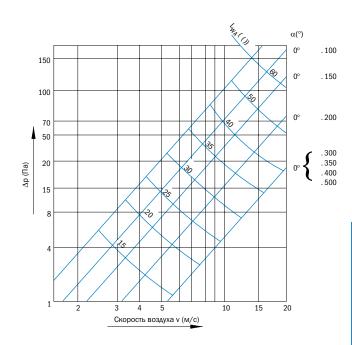
Размеры ZL-2

Размер	80	100	125	140	150	160	180	200	225	250	280	315	400	500	630
ΦD1	78	98	123	138	148	158	178	198	223	248	278	313	398	498	628
Α	105	115	125	135	140	145	155	165	175	190	205	220	295	345	410
В	55	65	75	85	90	95	105	115	125	140	155	170	215	265	330
С						4	0					65			
L				100				130					130		

Виды приводов


Ручной привод с рукояткой и фиксируюшим механизмом

Пневматический привод


Модель изготавливается по предварительному заказу.

Электропривод

Типы и мощность приводов указаны в таблице на стр. 333.

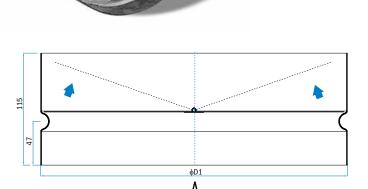
Диаграмма для определения потерь полного давления и уровня звуковой мощности

Значение символов

α • Угол поворота створки V (M/C) Средняя скорость воздуха

Потери давления $\Delta p_{\text{cel}} \left(\Pi a \right)$ L_{wa} (дБ(А)) Уровень звуковой мощности

Образец заказа ZL-1 / R разм. 200 **R** Ручное регулирование В Вывод под привод, но без электропривода **B4/J4** Электропривод NM 24A / DAS 1.N **B5/J5** Электропривод NM 230A / DAS 2.N **B6/J6** Электропривод NM 24A-SR / DMS 1 **B7/J7** Электропривод SM 24A / DA 1 **В8/Ј8** Электропривод SM 230A / DA 2 **В9/Ј9** Электропривод SM 24A SR (плавное регулирование) / DM 1,1 **B10/J10** Электропривод SM 230A SR/DM 2,2 **Р** Пневмопривод - 1,2 Тип запорного клапана Примечание: Диапазон применения электроприводов в таблице на стр. 333.


Обратный клапан RSK

Применение

Обратные клапаны используются для автоматического прекращения подачи воздуха при выключении вентилятора, устанавливаются в круглых воздуховодах. Лепестки сконструированы таким образом, чтобы потери давления на клапане были минимальными.

Описание

Обратный клапан состоит из корпуса, изготовленного из оцинкованной стали, и двух лепестков из тонкого алюминиевого листа. Лепестки возвращаются в положение «закрыто» с помощью пружин из нержавеющей стали при выключении вентилятора.

Направление воздушного потока

Размер	100	112	125	140	150	160	180	200	224	250	280	300	315	355
ΦD1	99	111	124	139	149	159	179	199	223	249	279	299	314	354

Пример заказа

 Обратный клапан:
 RSK

 Размер:
 200

 Количество:
 12

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноарск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47 Казахстан (772)734-952-31 Таджикистан (992)427-82-92-69